No primeiro capítulo fiz uma discussão geral sobre o Modelo Padrão das partículas elementares. Coloquei basicamente o material que publiquei na coluna da Ciência Hoje Online, Para apreciar a festa do LHC , onde tive a oportunidade de mencionar algumas das partículas “elementares”. As aspas aqui representam o fato de que durante algum tempo se pensou que prótons, mésons e nêutrons fossem elementares. Como você viu no primeiro capítulo isso hoje não é mais assim.
Talvez seja interessante algum comentário introdutório sobre os processos de detecção de partículas elementares. Nossos sentidos não conseguem detectar a maioria das radiações produzidas na natureza. Podemos sentir a radiação eletromagnética na faixa acima do infravermelho, onde ela se manifesta sob a forma de calor, depois essa radiação torna-se visível até a faixa um pouco abaixo do ultravioleta. Portanto, radiação com energia do infravermelho para baixo e do ultravioleta para cima escapam aos nossos sentidos. Também temos limitações dimensionais. Na faixa do micrômetro (a milionésima parte do metro) para baixo é impossível vermos a olho nú.
A limitação dimensional é superada com o uso de diferentes tipos de microscópicos (ópticos, eletrônicos, iônicos, etc). As limitações, digamos, energéticas, são superadas por intermédio de interações com a matéria. É o produto dessa interação que nos indica a presença da radiação, e possibilita sua quantificação. Por exemplo, as ondas de rádio são percebidas depois que elas interagem com uma antena. O resultado da interação é processado e se transforma em áudio nos nossos aparelhos. Os raios-X foram inicialmente percebidos por causa da sua capacidade de sensibilizar um filme fotográfico. Depois foram desenvolvidos outros detectores, mais eficientes.
No capítulo sobre aceleradores e detectores de partículas discutiremos isso com mais detalhes.
Elétron
O elétron foi a primeira partícula elementar experimentalmente identificada. Sua descoberta foi conseqüência direta da linha de pesquisa que nos anos 1890 resultou na descoberta dos raios-X e da radioatividade. Sobre a descoberta dos raios-X, sugiro a leitura do artigo Raios X: Descoberta casual ou criterioso experimento?, que publiquei em 1995 na Ciência Hoje (vol. 19, n. 114, pp. 26-35). Sobre a descoberta da radioatividade existe um ótimo material produzido pelo prof. Roberto Martins, do IF-Unicamp.
| Se desejar complementar a leitura do artigo do prof. Martins, sugiro as duas colunas que escrevi sobre Rutherford: O Indiana Jones do núcleo atômico e Uma história mal contada. Você também pode ver os slides da palestra que apresentei na SBPC 2008: Dos raios alfa à energia nuclear: caminhos percorridos por Rrutherford. Sobre a descoberta do elétron, sugiro o bom material disponível no portal da UFPEL. | ![]() |
Próton
Nos experimentos mencionados acima, partículas alfa com altas energias, provenientes de materiais radioativos, eram lançadas sobre folhas finas de diferentes materiais sólidos. O resultado mais conhecido foi obtido com ouro.
| Em 1917, Rutherford inicia um caderno de laboratório, intitulado Range of High-Speed Atoms in Air and Other Gases. A idéia era investigar o alcance de partículas alfa em diferentes tipos de gases. | ![]() |
O próton foi descoberto, em 1919, quando Rutherford analisou os resultados obtidos com o nitrogênio. Ele observou que algo saia com poder de penetração superior ao da partícula alfa incidente. Esses resultados foram relatados no 4o. artigo da relação abaixo.
A primeira alternativa, de que o átomo de nitrogênio fosse “empurrado” pela partícula alfa e ganhasse energia não fazia sentido, pois o nitrogênio é muito mais pesado do a partícula alfa.
Este experimento possibilitou a Rutherford fazer duas importantes descobertas. Ele concluiu que o choque da partícula alfa com átomos de nitrogênio produzia átomos de hidrogênio, e que os átomos de nitrogênio desintegravam-se durante a colisão. No início ele pensou que o átomo de hidrogênio fazia parte do núcleo do nitrogênio, mas logo percebeu que se tratava de fato o núcleo do átomo de hidrogênio, que alguns depois recebeu o nome de próton.
Portanto, Rutherford descobriu de uma vez só, a desintegração artificial do núcleo e o próton. Também previu a existência do nêutron, mas não publicou essa conjectura, embora tenha apresentado na conferência Bakeriana que ele proferiu em 1920.
Nêutron
O experimento que abriu o caminho para a descoberta do nêutron foi realizado por Walther Bothe em 1930. Ele bombardeou átomos de berílio com partículas alfa e detectou uma radiação que ele interpretou como radiação gama altamente energética.
Isso despertou o interesse do casal Frédéric Joliot e Irène Curie, que pensou utilizar a radiação para produzir transmutação. Repetiram o experimento de Bothe e fizeram com que a radiação incidisse sobre um bloco de parafina, o que significa dizer essencialmente sobre um material contendo carbono e hidrogênio.
O casal Joliot-Curie detectou prótons com energia de aproximadamente 5 MeV (milhões de elétron-volts). Pela conservação de energia e quantidade de movimento, a radiação gama deveria ter uma energia da ordem de 50 MeV, algo impossível. Quando Chadwick comentou com Rutherford sobre o resultado do casal francês, o velho professor disse: não acredito que eles tenham observado uma radiação gama no experimento de Bothe. Aquilo deve ser a partícula neutra que previ em 1920. Chadwick repetiu o experimento e descobriu o nêutro.
Como diria o Anonymous Gourmet: voltaremos!















Sobre essas partículas (elementares e compostas) agem três tipos de forças, ou três tipos de interações. A interação eletromagnética, que atua em todas as partículas, desde que possuam carga elétrica, e tem alcance infinito; a interação fraca, que age sobre léptons e hádrons, desde que estejam a uma distância da ordem do raio do núcleo; e a interação forte, também conhecida como força nuclear, que age unicamente sobre os quarks e hádrons, e tem alcance similar à interação fraca.

